4 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Расстояние до ближайшей звезды в световых годах – самая близкая

Как долго лететь к ближайшей звезде? Часть первая: современные методы

В какой-то момент жизни каждый из нас задавал этот вопрос: как долго лететь к звездам? Можно ли осуществить такой перелет за одну человеческую жизнь, могут ли такие полеты стать нормой повседневности? На этот сложный вопрос очень много ответов, в зависимости от того, кто спрашивает. Некоторые простые, другие сложнее. Чтобы найти исчерпывающий ответ, слишком многое нужно принять во внимание.

К сожалению, никаких реальных оценок, которые помогли бы найти такой ответ, не существует, и это расстраивает футурологов и энтузиастов межзвездных путешествий. Нравится нам это или нет, космос очень большой (и сложный), и наши технологии все еще ограничены. Но если мы когда-нибудь решимся покинуть «родное гнездышко», у нас будет несколько способов добраться до ближайшей звездной системы в нашей галактике.

Ближайшей звездой к нашей Земле является Солнце, вполне себе «средняя» звезда по схеме «главной последовательности» Герцшпрунга – Рассела. Это означает, что звезда весьма стабильна и обеспечивает достаточно солнечного света, чтобы на нашей планете развивалась жизнь. Мы знаем, что вокруг звезд рядом с нашей Солнечной системой вращаются и другие планеты, и многие из этих звезд похожи на нашу собственную.

Возможные пригодные для жизни миры во Вселенной

В будущем, если человечество желает покинуть Солнечную систему, у нас будет огромный выбор звезд, на которые мы могли бы отправиться, и многие из них вполне могут располагать благоприятными для жизни условиями. Но куда мы отправимся и сколько времени у нас займет дорога туда? Не забывайте, что все это всего лишь домыслы, и нет никаких ориентиров для межзвездных путешествий в настоящее время. Ну, как говорил Гагарин, поехали!

Дотянуться до звезды

Как уже отмечалось, ближайшая звезда к нашей Солнечной системе — это Проксима Центавра, и поэтому имеет большой смысл начать планирование межзвездной миссии именно с нее. Будучи частью тройной звездной системы Альфа Центавра, Проксима находится в 4,24 светового года (1,3 парсека) от Земли. Альфа Центавра — это, по сути, самая яркая звезда из трех в системе, часть тесной бинарной системы в 4,37 светового года от Земли — тогда как Проксима Центавра (самая тусклая из трех) представляет собой изолированный красный карлик в 0,13 световых лет от двойной системы.

И хотя беседы о межзвездных путешествиях навевают мысли о всевозможных путешествиях «быстрее скорости света» (БСС), начиная от варп-скоростей и червоточины до подпространственных двигателей, такие теории либо в высшей степени вымышлены (вроде двигателя Алькубьерре), либо существуют лишь в научной фантастике. Любая миссия в глубокий космос растянется на поколения людей.

Итак, если начинать с одной из самых медленных форм космических путешествий, сколько времени потребуется, чтобы добраться до Проксимы Центавра?

Современные методы

Вопрос оценки длительности перемещения в космосе куда проще, если в нем замешаны существующие технологии и тела в нашей Солнечной системе. К примеру, используя технологию, используемую миссией «Новых горизонтов», 16 двигателей на гидразиновом монотопливе, можно добраться до Луны всего за 8 часов и 35 минут.

Есть также миссия SMART-1 Европейского космического агентства, которая двигалась к Луне с помощью ионной тяги. С этой революционной технологией, вариант которой использовал также космический зонд Dawn, чтобы достичь Весты, миссии SMART-1 потребовался год, месяц и две недели, чтобы добраться до Луны.

Когда мы говорим о возможных методах, мы говорим о тех, что вовлекают существующие технологии, или о тех, которых пока не существуют, но которые технически осуществимы. Некоторые из них, как вы увидите, проверены временем и подтверждены, а другие пока остаются под вопросом. Вкратце, они представляют возможный, но очень затратный по времени и финансам сценарий путешествия даже к ближайшей звезде.

Ионное движение

Сейчас самой медленной и самой экономичной формой двигателя является ионный двигатель. Несколько десятилетий назад ионное движение считалось предметом научной фантастики. Но в последние года технологии поддержки ионных двигателей перешли от теории к практике, и весьма успешно. Миссия SMART-1 Европейского космического агентства — пример успешно проведенной миссии к Луне за 13 месяцев спирального движения от Земли.

Одной из первых миссий, использовавших технологию ионного двигателя, была миссия Deep Space 1 к комете Боррелли в 1998 году. DS1 тоже использовал ксеноновый ионный двигатель и потратил 81,5 кг топлива. За 20 месяцев тяги DS1 развил скорости в 56 000 км/ч на момент пролета кометы.

Ионные двигатели более экономичны, чем ракетные технологии, поскольку их тяга на единицу массы ракетного топлива (удельный импульс) намного выше. Но ионным двигателям нужно много времени, чтобы разогнать космический аппарат до существенных скоростей, и максимальная скорость зависит от топливной поддержки и объемов выработки электроэнергии.

Читать еще:  До скольки лет можно делать эко

Поэтому, если использовать ионное движение в миссии к Проксиме Центавра, двигатели должны иметь мощный источник энергии (ядерная энергия) и большие запасы топлива (хотя и меньше, чем обычные ракеты). Но если отталкиваться от допущения, что 81,5 кг ксенонового топлива переводится в 56 000 км/ч (и не будет никаких других форм движения), можно произвести расчеты.

На максимальной скорости в 56 000 км/ч Deep Space 1 потребовалось бы 81 000 лет, чтобы преодолеть 4,24 светового года между Землей и Проксимой Центавра. По времени это порядка 2700 поколений людей. Можно с уверенность сказать, что межпланетный ионный двигатель будет слишком медленным для пилотируемой межзвездной миссии.

Но если ионные двигатели будут крупнее и мощнее (то есть скорость исхода ионов будет значительно выше), если будет достаточно ракетного топлива, которого хватит на все 4,24 светового года, время путешествия значительно сократится. Но все равно останется значительно больше срока человеческой жизни.

Гравитационный маневр

Самый быстрый способ космических путешествий — это использование гравитационного маневра. Этот метод включает использование космическим аппаратом относительного движения (то есть орбиту) и гравитации планеты для изменения пути и скорости. Гравитационные маневры являются крайне полезной техникой космических полетов, особенно при использовании Земли или другой массивной планеты (вроде газового гиганта) для ускорения.

Космический аппарат Mariner 10 первым использовал этот метод, используя гравитационную тягу Венеры для разгона в сторону Меркурия в феврале 1974 года. В 1980-х зонд «Вояджер-1» использовал Сатурн и Юпитер для гравитационных маневров и разгона до 60 000 км/ч с последующим выходом в межзвездное пространство.

Миссии Helios 2, которая началась в 1976 году и должна была исследовать межпланетную среду между 0,3 а. е. и 1 а. е. от Солнца, принадлежит рекорд самой высокой скорости, развитой с помощью гравитационного маневра. На тот момент Helios 1 (запущенному в 1974 году) и Helios 2 принадлежал рекорд самого близкого подхода к Солнцу. Helios 2 был запущен обычной ракетой и выведен на сильно вытянутую орбиту.

Если бы «Вояджер-1» двигался в направлении красного карлика Проксимы Центавра с постоянной скорость в 60 000 км/ч, ему потребовалось бы 76 000 лет (или более 2500 поколений), чтобы преодолеть это расстояние. Но если бы зонд развил рекордную скорость Helios 2 — постоянную скорость в 240 000 км/ч — ему потребовалось бы 19 000 лет (или более 600 поколений), чтобы преодолеть 4,243 светового года. Существенно лучше, хотя и близко не практично.

Электромагнитный двигатель EM Drive

Другой предложенный метод межзвездных путешествий — это радиочастотный двигатель с резонансной полостью, известный также как EM Drive. У предложенного еще в 2001 году Роджером Шойером, британским ученым, который создал Satellite Propulsion Research Ltd (SPR) для реализации проекта, двигателя в основе лежит идея того, что электромагнитные микроволновые полости позволяют напрямую преобразовывать электроэнергию в тягу.

Тем не менее последние эксперименты с этой технологией очевидно привели к положительным результатам. В июле 2014 года, на 50-й конференции AIAA/ASME/SAE/ASEE Joint Propulsion Conference в Кливленде, штат Огайо, ученые NASA, занимающиеся передовыми реактивными разработками, заявили, что успешно испытали новую конструкцию электромагнитного двигателя.

В 2010 году профессор Чжуан Янг из Северо-Западного политехнического университета в Сиань, Китай, начала публиковать серию статей о своих исследованиях технологии EM Drive. В 2012 году она сообщила о высокой входной мощности (2,5 кВт) и зафиксированной тяге в 720 мн. В 2014 году она также провела обширные испытания, включая замеры внутренней температуры со встроенными термопарами, которые показали, что система работает.

По расчетам на базе прототипа NASA (которому дали оценку мощности в 0,4 Н/киловатт), космический аппарат на электромагнитном двигателе может осуществить поездку к Плутону менее чем за 18 месяцев. Это в шесть раз меньше, чем потребовалось зонду «Новые горизонты», который двигался на скорости 58 000 км/ч.

Звучит впечатляюще. Но даже в таком случае корабль на электромагнитных двигателях будет лететь к Проксиме Центавра 13 000 лет. Близко, но все еще недостаточно. Кроме того, пока в этой технологии не будут расставлены все точки над ё, рано говорить о ее использовании.

Ядерное тепловое и ядерное электрическое движение

Еще одна возможность осуществить межзвездный перелет — использовать космический аппарат, оснащенный ядерными двигателями. NASA десятилетиями изучало такие варианты. В ракете на ядерном тепловом движении можно было бы использовать урановые или дейтериевые реакторы, чтобы нагревать водород в реакторе, превращая его в ионизированный газ (плазму водорода), который затем будет направляться в сопло ракеты, генерируя тягу.

Читать еще:  Что будет если много пить алкоголь: 100 грамм водки каждый день

По сравнению с химическими двигателями, у ядерных есть неоспоримые преимущества. Во-первых, это практически неограниченная энергетическая плотность по сравнению с ракетным топливом. Кроме того, ядерный двигатель также будет вырабатывать мощную тягу по сравнению с используемым объемом топлива. Это позволит сократить объемы необходимого топлива, а вместе с тем вес и стоимость конкретного аппарата.

Хотя двигатели на тепловой ядерной энергии пока в космос не выходили, их прототипы создавались и испытывались, а предлагалось их еще больше.

И все же, несмотря на преимущества в экономии топлива и удельном импульсе, самая лучшая из предложенных концепций ядерного теплового двигателя имеет максимальный удельный импульс в 5000 секунд (50 кН·c/кг). Используя ядерные двигатели, работающие на ядерном делении или синтезе, ученые NASA могли бы доставить космический аппарат на Марс всего за 90 дней, если Красная планета будет в 55 000 000 километрах от Земли.

Но если говорить о путешествии к Проксиме Центавра, ядерной ракете потребуются столетия, чтобы разогнаться до существенной доли скорости света. Потом потребуются несколько десятилетий пути, а за ними еще много веков торможения на пути к цели. Мы все еще в 1000 годах от пункта назначения. Что хорошо для межпланетных миссий, не так хорошо для межзвездных.

Ближайшая звезда к Земле

Какая звезда – ближайшая к Земле?
Большинство из нас сразу вспомнят Альфу Центавра, Сириус, а то и вовсе Полярную звезду.
И только потом сообразят, что ближайшая звезда к Земле – это Солнце 🙂

Правильнее спрашивать о ближайшей звезде к Солнцу, поскольку Земля вращается вокруг него, но в космических масштабах это не так важно.

Хорошо, тогда как называется ближайшая звезда к Солнцу?
Долгое время считалось что ближайшая звезда к Солнцу – Альфа Центавра, которая находится в южном полушарии неба. Расстояние до неё – 4,37 светового года. Но, в 1915 году рядом с Альфа Центавра открыли звезду Проксима Центавра, которая скорее всего относится к системе Альфа Центавра.
Поэтому, в обще-то можно говорить что система Альфа Центавра – самая близкая к Земле звёздная система, имея ввиду все её составные части.
Подробнее читайте ниже.

Ближайшая к Земле звезда

Самая большая звезда в системе Альфа Центавра – это звезда Альфа Центавра А.
Рядом расположена вторая звезда – Альфа Центавра B, несколько меньшая по размерам.
Обе эти звезды вращаются вокруг общего центра масс и поэтому они поочерёдно могут становиться ближайшей звездой к Земле.
А вот вокруг этой пары звёзд “Альфа Центавра” вращается ещё одна крошечная звёздочка – красный карлик Проксима Центавра.
Траектории движения этих трёх звёзд относительно друг друга довольно сложные.
И всё-же, в настоящее время именно Проксима Центавра – самая близкая звезда к Земле.

Проксима Центавра

Звезда Проксима Центавра – красный карлик, его видимая звёздная величина составляет всего 11,05 m . Абсолютная же звёздная величина равна всего лишь 15,49 m .
Поэтому, даже находясь на Альфе Центавра, мы можем видеть Проксиму Центавра неяркой звёздочкой примерно 5-ой звёздной величины.
Расстояние от Солнца до Проксимы Центавра – 4,22 светового года.

Есть предположения, что Проксима Центавра вращается вокруг системы Альфа Центавра с периодом около 500000 лет. Поэтому, Проксиму Центавра иногда ещё называют Альфа Центавра С, то есть считают её третьим элементом звёздной системы Альфа Центавра.
Радиус орбиты Проксима Центавра вокруг Альфы Центавра составляет около 15 000 ± 700 а. е. или около 0,21 светового года. Для сравнения: расстояние от Проксимы Центавра до Солнца – лишь в 20 раз больше этого значения.

Принадлежность Проксимы Центавра к системе считается не до конца доказанной. Однако, в пользу такого предположения говорит то, что векторы собственных движений Проксимы Центавра и отдельно пары Альфа Центавра почти совпадают. А одинаковые вектора движений присущи именно звёздам, которые входят в одну и ту же систему.

При помощи телескопа “Хаббл” было исследовано пространство около Проксимы Центавра и выяснено, что на её орбите нет красных карликов. Также нет и суперземель (планет, которые немного больше Земли) в поясе обитаемости.
Однако, 24 августа 2016 года Европейская южная обсерватория подтвердила существование землеподобной планеты в обитаемой зоне Проксимы Центавра. Планета получила имя “Проксима Центавра b”.

Возможна ли жизнь на планете Проксима Центавра b – это спорный вопрос.
Да, планета находится в поясе обитаемости, и это уже большая удача, поскольку пояс обитаемости около такой маленькой звезды очень узок.
Но, Проксима Центавра является периодически вспыхивающей звездой. Во время этих вспышек резко возрастает уровень не только обычного, но и рентгеновского излучения. А это уже крайне нежелательно для живых существ (по аналогии с белковой жизнью на Земле).

Читать еще:  Как сшить распашонку для новорожденного своими руками?

Ближайшие звёзды к Земле в прошлом и будущем

Звёзды не стоят на месте, они движутся, хотя это не заметно даже на протяжении жизни одного человека. Всегда ли Проксима Центавра была ближайшей к Солнцу звездой и сколько она будет ею являться?

Проксима Центавра является яближайшей звездой к Солнцу на протяжении последних 32000 лет и будет таковой ещё долго. А через 33000 лет самой близкой звездой к Солнцу станет звезда Росс 248 – одиночная звезда из созвездия Андромеды. Сейчас звезда Росс 248 находится на расстоянии 10,3 световых лет от Солнца – это в 2,5 раза дальше чем расстояние до Проксимы Центавра сегодня.

Список ближайших звёзд к Земле

Здесь вы можете посмотреть на список самых близких к Земле звёзд и узнать их основные характеристики.
После таблицы дана пространственная скарта взаимного расположения этих звёзд относительно Солнца.

Какое расстояние до ближайшей галактики?

Ученые впервые смогли замерить точное расстояние до ближайшей от нас галактики. Эта карликовая галактика известна под названием Большое Магелланово Облако. Она расположена от нас на расстоянии 163 тысячи световых лет или 49,97 килопарсек, если быть точными.

Галактика Большое Магелланово Облако медленно плавает в космическом пространстве, обходя нашу галактику Млечный Путь вокруг подобно тому, как Луна вращается вокруг Земли.

Огромные облака газа в районе галактики медленно рассеиваются, в результате чего образуются новые звезды, которые освещают своим светом межзвездное пространство, создавая яркие красочные космические пейзажи. Эти пейзажи смог запечатлеть на фото космический телескоп “Хаббл”.

Мелкая галактика Большое Магелланово Облако включает туманность Тарантул – самую яркую звездную колыбель в космосе по соседству с нами – в ней замечены признаки образования новых звезд.

Ученые смогли сделать вычисления, наблюдая за редкими близкими парами звезд, известными как затменно-двойные звезды. Эти пары звезд гравитационно связаны друг с другом, а когда одна из звезд затмевает другую, как видно наблюдателю с Земли, общая яркость системы снижается.

Если сравнить яркость звезд, можно с невероятной точностью таким образом вычислять точное расстояния до них.

Определение точного расстояния до космических объектов очень важно для понимания размеров и возраста нашей Вселенной. Пока вопрос остается открытым: какова по размерам наша Вселенная точно никто из ученых пока сказать не может.

После того, как астрономам удалось добиться такой точности в определение расстояний в космосе, они смогут заняться и более дальними объектами и, в конечном итоге, смогут вычислить размеры Вселенной.

Также новые возможности позволят более точно определить скорость расширения нашей Вселенной, а также более точно вычислить постоянную Хаббла. Этот коэффициент был назван в честь Эдвина П. Хаббла, американского астронома, который в 1929 году доказал, что наша Вселенная постоянно расширяется с самого начала своего существования.

Расстояние между галактиками

Галактика Большое Магелланово Облако – ближайшая от нас карликовая галактика, а вот крупной по размерам галактикой – нашей соседкой считается спиральная галактика Андромеды, которая находится от нас на расстоянии примерно 2,52 миллиона световых лет.

Расстояние между нашей галактикой и галактикой Андромеды постепенно сокращается. Они приближаются друг к другу со скоростью примерно 100-140 километров в секунду, хотя и встретятся очень нескоро, а точнее, через 3-4 миллиарда лет.

Возможно, именно так будет выглядеть ночное небо для земного наблюдателя через несколько миллиардов лет

Расстояния между галактиками, таким образом, могут быть самыми разными на разных этапах времени, так как они постоянно находятся в динамике.

Масштабы Вселенной

Видимая Вселенная имеет невероятный по размерам диаметр, который составляет миллиарды, а может быть и десятки миллиардов световых лет. Многие объекты, которые мы можем видеть с помощью телескопов, уже давно не существуют или выглядят совсем иначе, потому что свет до них шел невероятно долго.

Предлагаемая серия иллюстраций поможет вам представить хотя бы в общих чертах масштабы нашей Вселенной.

Солнечная система со своими крупнейшими объектами (планетами и карликовыми планетами)

Солнце (в центре) и ближайшие к нему звезды

Галактика Млечный путь с указанием группы ближайших от Солнечной системы звездных систем

Группа ближайших галактик, включающая более 50 галактик, число которых постоянно увеличивается по мере открытия новых.

Местное сверхскопление галактик (Сверхскопление Девы). Размер – около 200 миллионов световых лет

Группа сверхскоплений галактик

Источники:

http://hi-news.ru/technology/kak-dolgo-letet-k-blizhajshej-zvezde-chast-pervaya-sovremennye-metody.html
http://kosmoved.ru/blizhayshaya-zvezda.shtml
http://www.infoniac.ru/news/Kakoe-rasstoyanie-do-blizhaishei-galaktiki.html

голоса
Рейтинг статьи
Ссылка на основную публикацию
Статьи c упоминанием слов: