9 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Радиус вписанной окружности в квадрат формула: площадь круга описанного около прямоугольника

Содержание

Площадь вписанной окружности

Окружность вписанная в квадрат

Чтобы формула нахождения радиуса вписанной окружности в квадрат r была правильно рассчитана, необходимо изначально вспомнить какими свойствами обладает данная фигура. У квадрата:

  • все углы прямые, то есть, равны 90°;
  • все стороны, как и углы, равны;
  • диагонали равны, точкой пересечения бьются строго пополам и пересекаются под углом 90°.

При этом вписанная в выпуклый многоугольник окружность обязательно касается всех его сторон. Обозначим квадрат ABCD, точку пресечения его диагоналей O. Как видно на рисунке 1, пересечение линий АС и ВD дают равнобедренный треугольник АОВ, в котором стороны АО=ОВ, углы ОАВ=АВО=45°, а угол АОВ=90°. Тогда радиусом вписанной окружности в квадрат будет не что иное, как высота ОЕ полученного равнобедренного треугольника АОВ.

Если предположить, что сторона квадрата равна у, то формула нахождения радиуса вписанной окружности в квадрат будет выглядеть следующим образом:

Объяснение: в равнобедренном треугольнике АОВ высота ОЕ или радиус r делят основание АВ пополам (свойства), образовывая при этом прямоугольный треугольник с прямым угол ОЕВ. В маленьком треугольнике ЕВО основание ОВ образует со сторонами ОЕ и ЕВ углы по 45°. Значит треугольник ЕВО еще и равнобедренный. Стороны ОЕ и ЕВ равны.

Для наглядности приведем численный пример нахождения величины радиуса вписанной окружности в квадрат со стороной равной 13 см. В данном случае значение вписанного радиуса будет равно:

Легко решить и обратную задачу. Предположим, что известен радиус вписанной окружности – 9 см, тогда анализируя пример нахождения величины радиуса вписанной окружности в квадрат, можно найти сторону квадрата:
Находим из этого уравнения неизвестное значение:.

Окружность описанная около квадрата

Вокруг квадрата также можно описать окружность. В этом случае каждая вершина фигуры будет касаться окружности. Следующая формула нахождения радиуса описанной окружности около квадрата будет находиться еще проще. В этом случае R описанной окружности будет равен половине диагонали квадрата. В буквенном виде формула выглядит так (рисунок 2):

Объяснение: после проведения диагоналей ABCD образовались два одинаковых прямоугольных треугольника АВС = CDA. Рассмотрим один из них. В треугольнике CAD:

  • угол CDA=90°;
  • стороны AD=CD. Признак равнобедренного треугольника;
  • угол DAC равен ACD. Они равны по 45°.

Чтобы найти в этом прямоугольном треугольнике гипотенузу АС, необходимо воспользоваться теоремой Пифагора:
, отсюда
Поскольку окружность касается вершин квадрата, а точка пересечения его диагоналей является центром описанной окружности (свойства), то отрезок ОС и будет радиусом окружности. Он является половинкой гипотенузы. Это утверждение вытекает из свойств равнобедренного треугольника или свойств диагоналей квадрата. Потому формула нахождения радиуса описанной окружности около квадрата в нашем случае имеет следующий вид:
Поскольку AD=CD, а свойства квадратного корня позволяют вынести одно из подкоренных выражений, тогда формула приобретает вид:

Численный пример нахождения величины радиуса описанной окружности около квадрата будет таким.
Предположим, что диагональ квадрата равна , тогда:

Нахождения величины радиуса описанной окружности около квадрата при известной величине радиуса вписанной окружности.

Рассмотрим пример
Задача: радиус окружности вписанной в квадрат равен . Найти радиус окружности описанной около этого квадрата.
Дано:

  • треугольник ОСЕ – равнобедренный и прямоугольный;
  • ОЕ=ЕС=;
  • ОЕС=90°;
  • ЕОС=ОСЕ=45°;
Читать еще:  Можно ли забеременеть если месячные нерегулярные, не регулярный менструационного цикла как лечить

Найти: ОС=?
Решение: в данном случае задачу можно решить, воспользовавшись либо теоремой Пифагора, либо формулой для R. Второй случай будет проще, поскольку формула для R выведена из теоремы.

Квадрат. Формулы

Квадрат и окружность – две простые фигуры геометрии свойства которых должны знать все. Квадрат является частным случаем четырехугольников, прямоугольников, параллелограммов, ромбов, а отличается от них равными сторонами и прямыми углами.

Квадрат наиболее симметричная фигура среди всех четырехугольников.

Свойства квадрата

Свойства квадрата — это основные признаки которые позволяют распознать его среди прямоугольников, ромбов, четырехугольников:

  • В квадрата все стороны и углы равны AB=BC=CD=AD.
  • Противоположные стороны параллельны между собой
  • Углы между соседними сторонами прямые.
  • Диалонали квадрата равны и пересекаются под прямым углом.
  • Диагонали является одновременно биссектрисами углов квадрата.
  • Точка в которой пересекаются диагонали является центром квадрата, кроме этого — центром вписанной и описанной окружности.
  • Диагонали делят квадрат на четыре одинаковые равнобедренные прямоугольные треугольники .

Площадь квадрата

Больше примеров в школьном курсе при изучении квадрату связано с вычислением его площади и периметра. Вам может показаться что для вычисления площади достаточно знать одну формулу S=a*a и этого хватит для всех задач, однак это не так. Поскольку быстро информация воспринимается и изучается визуально, то мы объединили все величины квадрата которые Вам придется вычислять и нарисовали простые и понятные рисунки с формулами. Их без трудностей можете скачать по ссилке внизу статьи.

Большинство обозначений Вам понятна, но повторим их снова
a– сторона квадрата;
d– диагональ;
P– периметр;
S– площадь;
R– радиус описанной окружности;
r– радиус вписанной окружности;
l– отрезок изображен на рисунке (часто используется в сложных примерах).

Формулы площади квадрата которые приведены ниже дают возможность вычислять ее через периметр, сторону, диагонали, радиусы .





Они не слишком сложные и каждая из них может Вам пригодиться для вычисления площади квадрата.

Периметр квадрата

Что может быть проще вычисления периметра квадрата если конечно известно его стороны. Однако, если задана только диагональ, площадь, радиус то нахождение периметра не так очевидно. Приведенный ниже рисунок содержит самые необходимые формулы для вычисления параметра

Сами же формулы периметру от различных параметров квадрату привидены ниже

Диагональ квадрата

Диагональ квадрата может бить выражена через радиусы вписанной, описанной окружностей, сторону, периметр, площадь следующими формулам.

В качестве справочника формул диагонали квадрата можете использовать следующий рисунок.

Радиус описанной окружности

Простейшая для вычислений формула радиуса описанной окружности R=d/2, т.е. радиус равен половине диагонали квадрата. Все последующие формулы которые помогут определить радиус описанной окружности содержат корни, однако при вычислениях незаменимы.

Ниже изображен вспомогательный рисунок с приведенным всеми формулами.

Радиус вписанной окружности в квадрат

Радиус вписанной окружности из рисунка равный половине его стороны.

Также он равной одной восьмой части периметра. Зависимости для нахождения радиуса вписанной окружности через площадь, диагональ, радиус описанной окружности содержат иррациональности. Однако и в условиях примеров величины, известные для вычисления радиуса, как правило, заданны с корнями или такими которые легко упрощаются (например ).

Черновик-подсказка формул радиуса вписанной в квадрат окружности приведена ниже

Если же задано диаметр вписанной или описанной окружности то делим пополам (чтобы получить радиус) и можем применять в приведенных формулах. Это Вы думаю помните.

Бонус для всех школьников и студентов. Все цветные графики с формулами площади квадрата, его периметра, диагонали, радиусов вписанной и описанной окружности Вы можете скачать по ссылке внизу.
Распечатывайте формулы и пользуйтесь в обучении.

Треугольник называется вписанным, если все его вершины лежат на окружности. В этом случае окружность называется описанной вокруг треугольника. Расстояние от ее центра до каждой вершины треугольника будет одинаковым и равным радиусу этой окружности. Вокруг любого треугольника можно описать окружность, но только одну.

Центр описанной окружности будет лежать в точке пересечения серединных перпендикуляров, проведенных к каждой из сторон треугольника. Если окружность описана вокруг прямоугольного треугольника, то ее центр будет лежать на середине гипотенузы. Для любого треугольника, вокруг которого описана окружность действует формула площади треугольника через радиус описанной окружности:

Читать еще:  Постные оладьи с яблоками

в которой a,b,c – стороны треугольника, а R – радиус описанной окружности.

Пример расчета площади треугольника через радиус описанной окружности:
Пусть дан треугольник со сторонами a = 5 см, b = 6 см, c = 4 см. Вокруг него описана окружность с R = 3 см. найдите площадь.
Имея все требуемые данные, просто подставляем значения в формулу:

Площадь треугольника будет равна 10 кв. см

Довольно часто по условиям можно встретить данную площадь описанной окружности, которую необходимо использовать для нахождения площади вписанного треугольника. Формула площади треугольника через площадь описанной окружности находится после вычисления радиуса. Его можно вычислить несколькими способами. Для начала рассмотрим формулу площади окружности:
Преобразовав эту формулу, мы получим, что радиус:
Используя эту формулу, мы получаем, что зная площадь описанной окружности, можно найти площадь треугольника следующим способом:

Зная все три стороны заданного треугольника можно применить для нахождения площади формулу Герона. Из нее же можно найти и радиус описанной окружности. То есть если в условиях даны все стороны треугольника и требуется поиск площади через радиус описанной окружности, мы сначала должны вычислить его по формуле:
То есть, зная длины всех сторон треугольника, мы можем найти площадь треугольника через радиус описанной окружности.

Пример расчета площади треугольника через площадь описанной окружности:
Дан треугольник, вокруг которого описана окружность с площадью 8 кв. см. Стороны треугольника a = 4см, b = 3 см, c = 5 см. Для начала найдем радиус окружности через ее площадь:
Попробуем найти радиус по другой формуле, которую мы вывели из способа нахождения площади треугольника по трем сторонам. Найдем полупериметр:
Подставим значения в формулу:
Теперь используем формулу нахождения площади вписанного треугольника:
Зная несколько несложных формул, мы смогли найти площадь вписанного треугольника. Она будет равна 6 кв. см.

Площадь треугольника

Формулы для площади треугольника

Вывод формул для площади произвольного треугольника

Вывод формул для площади равностороннего (правильного) треугольника

Вывод формул для площади прямоугольного треугольника

Формулы для площади треугольника

Формулы, позволяющие находить площадь треугольника, удобно представить в виде следующей таблицы.

Радиусы описанной и вписанной окружностей в квадрат

Окружность вписанная в квадрат

Чтобы формула нахождения радиуса вписанной окружности в квадрат r была правильно рассчитана, необходимо изначально вспомнить какими свойствами обладает данная фигура. У квадрата:

  • все углы прямые, то есть, равны 90°;
  • все стороны, как и углы, равны;
  • диагонали равны, точкой пересечения бьются строго пополам и пересекаются под углом 90°.

При этом вписанная в выпуклый многоугольник окружность обязательно касается всех его сторон. Обозначим квадрат ABCD, точку пресечения его диагоналей O. Как видно на рисунке 1, пересечение линий АС и ВD дают равнобедренный треугольник АОВ, в котором стороны АО=ОВ, углы ОАВ=АВО=45°, а угол АОВ=90°. Тогда радиусом вписанной окружности в квадрат будет не что иное, как высота ОЕ полученного равнобедренного треугольника АОВ.

Если предположить, что сторона квадрата равна у, то формула нахождения радиуса вписанной окружности в квадрат будет выглядеть следующим образом:

Объяснение: в равнобедренном треугольнике АОВ высота ОЕ или радиус r делят основание АВ пополам (свойства), образовывая при этом прямоугольный треугольник с прямым угол ОЕВ. В маленьком треугольнике ЕВО основание ОВ образует со сторонами ОЕ и ЕВ углы по 45°. Значит треугольник ЕВО еще и равнобедренный. Стороны ОЕ и ЕВ равны.

Окружность описанная около квадрата

Вокруг квадрата также можно описать окружность. В этом случае каждая вершина фигуры будет касаться окружности. Следующая формула нахождения радиуса описанной окружности около квадрата будет находиться еще проще. В этом случае R описанной окружности будет равен половине диагонали квадрата. В буквенном виде формула выглядит так (рисунок 2):

Объяснение: после проведения диагоналей ABCD образовались два одинаковых прямоугольных треугольника АВС = CDA. Рассмотрим один из них. В треугольнике CAD:

  • угол CDA=90°;
  • стороны AD=CD. Признак равнобедренного треугольника;
  • угол DAC равен ACD. Они равны по 45°.
Читать еще:  Ушной клещ (отодектоз) у кошек и котов: фото, симптомы заболевания и его лечение в домашних условиях (в том числе у котенка), отзывы

Чтобы найти в этом прямоугольном треугольнике гипотенузу АС, необходимо воспользоваться теоремой Пифагора:
, отсюда
Поскольку окружность касается вершин квадрата, а точка пересечения его диагоналей является центром описанной окружности (свойства), то отрезок ОС и будет радиусом окружности. Он является половинкой гипотенузы. Это утверждение вытекает из свойств равнобедренного треугольника или свойств диагоналей квадрата. Потому формула нахождения радиуса описанной окружности около квадрата в нашем случае имеет следующий вид:

Поскольку AD=CD, а свойства квадратного корня позволяют вынести одно из подкоренных выражений, тогда формула приобретает вид:

Нахождения величины радиуса описанной окружности около квадрата при известной величине радиуса вписанной окружности.

  • треугольник ОСЕ – равнобедренный и прямоугольный;
  • ОЕ=ЕС=;
  • ОЕС=90°;
  • ЕОС=ОСЕ=45°;

Найти: ОС=?
Решение: в данном случае задачу можно решить, воспользовавшись либо теоремой Пифагора, либо формулой для R. Второй случай будет проще, поскольку формула для R выведена из теоремы.

Геометрические фигуры. Квадрат.

Квадрат — правильный четырёхугольник. У квадрата все углы и стороны одинаковы.

Квадраты различаются лишь длиной стороны, а все 4 угла прямые и равны 90°.

Квадратом может стать параллелограмм, ромб либо прямоугольник, когда у них одинаковые длины диагоналей, сторон и равные углы.

Свойства квадрата.

— у всех 4-х сторон квадрата одинаковая длина, т.е. стороны квадрата равны:

— противолежащие стороны квадрата параллельны:

— каждый уг ол квадрата прямой:

— сумма углов квадрата равна 360°:

— каждая диагональ квадрата имеет такую же длину, как и другая:

— каждая из диагоналей квадрата делит квадрат на 2 одинаковые симметричные фигуры.

— угол пересечения диагоналей квадрата равен 90°, пересекая друг друга, диагонали делятся на две равные части:

AC┴BD;AO = BO = CO = DO = d/2

— точку пересечения диагоналей называют центр квадрата и она оказывается центром вписанной и описанной окружностей.

— все диагонали делят угол квадрата на две равные части, таким образом, они оказываются биссектрисами углов квадрата:

ΔABC = ΔADC = ΔBAD = ΔBCD

— диагонали делят квадрат на 4 одинаковых треугольника, кроме того, полученные треугольники в одно время и равнобедренные и прямоугольные:

ΔAOB = ΔBOC = ΔCOD = ΔDOA

Диагональ квадрата.

Диагональю квадрата является всякий отрезок, который соединяет 2-е вершины противолежащих углов квадрата.

Диагональ всякого квадрата больше стороны этого квадрата в √2 раз.

Формулы для определения длины диагонали квадрата:

1. Формула диагонали квадрата через сторону квадрата:

2. Формула диагонали квадрата через площадь квадрата:

3. Формула диагонали квадрата через периметр квадрата:

4. Сумма углов квадрата = 360°:

5. Диагонали квадрата одной длины:

6. Все диагонали квадрата делят квадрат на 2-е одинаковые фигуры, которые симметричны:

7. Угол пересечения диагоналей квадрата равен 90°, пересекая друг друга, диагонали делятся на две равные части:

8. Формула диагонали квадрата через длину отрезка l:

9. Формула диагонали квадрата через радиус вписанной окружности:

R — радиус вписанной окружности;

D — диаметр вписанной окружности;

d — диагональ квадрата.

10. Формула диагонали квадрата через радиус описанной окружности:

R – радиус описанной окружности;

D – диаметр описанной окружности;

11. Формула диагонали квадрата через линию, которая выходит из угла на середину стороны квадрата:

C – линия, которая выходит из угла на середину стороны квадрата;

Вписанный круг в квадрат – это круг, примыкающий к серединам сторон квадрата и имеющий центр на пересечении диагоналей квадрата.

Радиус вписанной окружности — сторона квадрата (половина).

Площадь круга вписанного в квадрат меньше площади квадрата в π/4 раза.

Круг, описанный вокруг квадрата — это круг, который проходит через 4-ре вершины квадрата и который имеет центр на пересечении диагоналей квадрата.

Радиус окружности описанной вокруг квадрата больше радиуса вписанной окружности в √2 раз.

Радиус окружности описанной вокруг квадрата равен 1/2 диагонали.

Площадь круга описанного вокруг квадрата большая площадь того же квадрата в π/2 раз.

Источники:

http://izhsan.ru/ploshhad-vpisannoj-okruzhnosti/
http://2mb.ru/matematika/geometriya/radiusy-opisannoj-i-vpisannoj-okruzhnosti-v-kvadrat/
http://www.calc.ru/2316.html

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector